

International Baccalaureate ${ }^{\circ}$
Baccalauréat International
Bachillerato Internacional

22126113

CHEMISTRY

HIGHER LEVEL

PAPER 1

Tuesday 8 May 2012 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
- The maximum mark for this examination paper is [40 marks].
The Periodic Table

1. What is the total number of atoms in 0.100 mol of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$?
A. 11
B. 6.02×10^{22}
C. 3.01×10^{23}
D. 6.62×10^{23}
2. Nitroglycerine, $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}$, can be used in the manufacture of explosives. What is the coefficient of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}(1)$ when the equation for its decomposition reaction is balanced using the lowest whole numbers?

$$
\ldots \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}(\mathrm{l}) \rightarrow \ldots \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\ldots \mathrm{N}_{2}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g})
$$

A. 2
B. 4
C. 20
D. 33
3. The volume occupied by one mole of an ideal gas at 273 K and $1.01 \times 10^{5} \mathrm{~Pa}$ is $22.4 \mathrm{dm}^{3}$. What volume, in dm^{3}, is occupied by $3.20 \mathrm{~g} \mathrm{O}_{2}(\mathrm{~g})$ at 273 K and $1.01 \times 10^{5} \mathrm{~Pa}$?
A. 2.24
B. 4.48
C. 22.4
D. 71.7
4. What volume, in m^{3}, is occupied by 2.00 mol of gas at $27^{\circ} \mathrm{C}$ and 2.00 atm pressure?

Assume: $1.00 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}$ and $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.
A. $\frac{8.31 \times 27}{1.01 \times 10^{5}}$
B. $\frac{2.00 \times 8.31 \times 27}{1.01 \times 10^{5}}$
C. $\frac{2.00 \times 8.31 \times 300}{2.00 \times 1.01 \times 10^{5}}$
D. $\frac{2.00 \times 8.31 \times 300}{1.01 \times 10^{5}}$
5. In the electromagnetic spectrum, which will have the shortest wavelength and the greatest energy?

	Shortest wavelength	Greatest energy
A.	ultraviolet	ultraviolet
B.	infrared	infrared
C.	ultraviolet	infrared
D.	infrared	ultraviolet

6. What is the electron configuration of Sn^{2+} ?
A. $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{2}$
B. $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 4 d^{10} 5 p^{2}$
D. $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{8} 5 p^{2}$
7. Which series is correctly arranged in order of decreasing radius?
A. $\mathrm{Al}^{3+}>\mathrm{Mg}^{2+}>\mathrm{Na}^{+}>\mathrm{F}^{-}$
B. $\mathrm{F}^{-}>\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}$
C. $\mathrm{F}^{-}>\mathrm{Al}^{3+}>\mathrm{Mg}^{2+}>\mathrm{Na}^{+}$
D. $\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}>\mathrm{F}^{-}$
8. Which complex is colourless in solution?
A. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$
B. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$
C. $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{2}$
D. $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
9. Which species contain dative covalent bonds?
I. CO
II. NH_{3}
III. $\mathrm{H}_{3} \mathrm{O}^{+}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
10. Which single covalent bond is the most polar, given the following electronegativity values?

Element	H	C	S	O
Electronegativity	2.2	2.6	2.6	3.4

A. $\mathrm{C}-\mathrm{O}$
B. $\mathrm{S}-\mathrm{H}$
C. $\mathrm{C}-\mathrm{H}$
D. $\mathrm{O}-\mathrm{H}$
11. The Lewis (electron dot) structure of paracetamol (acetaminophen) is:

What are the approximate values of the bond angles?
A.

$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	$\boldsymbol{\theta}$
104.5°	120°	109.5°
109.5°	109.5°	109.5°
120°	120°	90°
104.5°	120°	90°

12. Which types of intermolecular forces exist in $\mathrm{HBr}, \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{~F}$?

$\mathbf{H B r}$	$\mathbf{C l}_{\mathbf{2}}$	$\mathbf{C H}_{\mathbf{3}} \mathbf{F}$	
A.	van der Waals' and dipole-dipole	van der Waals' only	van der Waals' and dipole-dipole
B.	van der Waals' and dipole-dipole	van der Waals' only	van der Waals', dipole-dipole and hydrogen bonding
C.	van der Waals' only	van der Waals' only	van der Waals', dipole-dipole and hydrogen bonding
D.	van der Waals' and dipole-dipole	van der Waals' and dipole-dipole	van der Waals', dipole-dipole and hydrogen bonding

13. Retinol (vitamin A) contains a total of $\mathbf{5}$ double bonds and $\mathbf{4 6}$ single bonds.

Which statements are correct?
I. There are 51σ and 5π bonds.
II. The oxygen atom is sp^{3} hybridized.
III. Retinol is a primary alcohol.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
14. Zinc metal contains metallic bonding. Which is the best description of a metallic bond?
A. The electrostatic attraction between a pair of electrons and positively charged nuclei.
B. The electrostatic attraction between oppositely charged ions.
C. The electrostatic attraction between a lattice of positive ions and delocalized electrons.
D. The bond formed when one atom provides both electrons in a shared pair.
15. Which reactions are exothermic?
I. $\quad \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
II. Reaction of aspirin with sodium hydroxide

Aspirin
III. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
16. Which equation represents the electron affinity of chlorine?
A. $\quad \mathrm{Cl}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}(\mathrm{g})$
B. $\mathrm{Cl}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Cl} \cdot(\mathrm{g})$
C. $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{g})$
D. $\mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{Cl}^{+}(\mathrm{g})+\mathrm{e}^{-}$
17. During which process is there a decrease in the entropy of the system?
A. $\mathrm{Ag}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NO}_{2}(\mathrm{~g})$
B. $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{BaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
C. $\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{5}(\mathrm{~g})$
D. $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
18. Which are appropriate units for the rate of a reaction?
A. $\mathrm{moldm}^{-3} \mathrm{~s}^{-1}$
B. $\mathrm{moldm}^{-3} \mathrm{~s}$
C. moldm^{-3}
D. s
19. Which graph represents a reaction that is second order with respect to X for the reaction $\mathrm{X} \rightarrow$ products?
A.

B.

C.

D.

20. Consider the reaction:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOBr}(\mathrm{~g})
$$

One suggested mechanism is:

$$
\begin{array}{ll}
\mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \stackrel{k_{1}}{\rightleftharpoons} \mathrm{NOBr}_{2}(\mathrm{~g}) & \text { fast } \\
\mathrm{NOBr}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \stackrel{k_{2}}{\longrightarrow} 2 \mathrm{NOBr}(\mathrm{~g}) & \text { slow }
\end{array}
$$

Which statements are correct?
I. $\quad \mathrm{NOBr}_{2}(\mathrm{~g})$ is an intermediate.
II. The second step is the rate-determining step.
III. rate $=k\left[\mathrm{NO}^{2}\left[\mathrm{Br}_{2}\right]\right.$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
21. What happens to the position of equilibrium and the value of K_{c} when the temperature is increased in the following reaction?

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta H^{\ominus}=+87.9 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

A.
B.
C.

Position of equilibrium	Value of $\boldsymbol{K}_{\mathbf{c}}$
shifts towards reactants	decreases
shifts towards reactants	increases
shifts towards products	decreases
shifts towards products	increases

22. Which statement is correct about the relationship between the vapour pressure, P, of ethanol and temperature, T ?
A. $\quad P$ increases linearly with increasing T.
B. $\quad P$ decreases linearly with increasing T.
C. $\quad P$ increases exponentially with increasing T.
D. $\quad P$ decreases exponentially with increasing T.
23. Which reaction represents an acid-base reaction according to the Lewis theory but not according to the Brønsted-Lowry theory?
A. $\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})$
B. $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$
C. $\quad \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$
D. $\mathrm{CuSO}_{4}(\mathrm{~s})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
24. Four aqueous solutions are listed below.

$$
\begin{array}{ll}
\text { W. } & 0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HNO}_{3}(\mathrm{aq}) \\
\text { X. } & 0.001 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HNO}_{3}(\mathrm{aq}) \\
\text { Y. } & 0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}(\mathrm{aq}) \\
\mathrm{Z} . & 0.001 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}(\mathrm{aq})
\end{array}
$$

What is the correct order of increasing pH of these solutions?
A. $\mathrm{W}<\mathrm{X}<\mathrm{Y}<\mathrm{Z}$
B. $\mathrm{W}<\mathrm{X}<\mathrm{Z}<\mathrm{Y}$
C. $\mathrm{X}<\mathrm{W}<\mathrm{Y}<\mathrm{Z}$
D. $\mathrm{X}<\mathrm{W}<\mathrm{Z}<\mathrm{Y}$
25. Penicillin G (benzyl penicillin) contains a number of different functional groups and has the following structure:

It is a weak monoprotic acid $\left(\mathrm{p} K_{\mathrm{a}}=2.79\right.$ at 298 K$)$. At 298 K , the ionic product constant for water, $K_{\mathrm{w}}=1.00 \times 10^{-14}$. What is the value of $\mathrm{p} K_{\mathrm{b}}$ for the conjugate base of penicillin G and which functional groups are present in penicillin G ?
A.

$\mathbf{p} \boldsymbol{K}_{\mathbf{b}}$	Selected functional groups in penicillin \mathbf{G}
11.21	carboxylic acid, amine
2.79	carboxylic acid, amide
11.21	ketone, alcohol
11.21	carboxylic acid, benzene ring

26. Which mixtures are buffer solutions?
I. $\mathrm{KHSO}_{4}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
II. $\mathrm{CH}_{3} \mathrm{COONa}(\mathrm{aq})$ and $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$
III. $\mathrm{HCOOK}(\mathrm{aq})$ and $\mathrm{HCOOH}(\mathrm{aq})$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
27. Which titration curve is produced by the titration of $25 \mathrm{~cm}^{3}$ of $1.00 \mathrm{moldm}^{-3} \mathrm{NaOH}$ with $1.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{COOH}$?
A.

B.

C.

D.

28. Consider the following reaction:

$$
3 \mathrm{Sn}^{2+}(\mathrm{aq})+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{SnO}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Which statement is correct?
A. Sn^{2+} is the oxidizing agent because it undergoes oxidation.
B. Sn^{2+} is the reducing agent because it undergoes oxidation.
C. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ is the oxidizing agent because it undergoes oxidation.
D. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ is the reducing agent because it undergoes oxidation.
29. What occurs during the operation of a voltaic cell based on the following overall reaction?

$$
2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s}) \rightarrow 2 \mathrm{Ag}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq})
$$

	External circuit	Ion movement in solution
A.	electrons move from $\mathrm{Cu}(\mathrm{s})$ to $\mathrm{Ag}(\mathrm{s})$	$\mathrm{Ag}^{+}(\mathrm{aq})$ move towards $\mathrm{Cu}(\mathrm{s})$
B.	electrons move from $\mathrm{Ag}(\mathrm{s})$ to $\mathrm{Cu}(\mathrm{s})$	$\mathrm{Ag}^{+}(\mathrm{aq})$ move towards $\mathrm{Ag}(\mathrm{s})$
C.	electrons move from Cu (s) to $\mathrm{Ag}(\mathrm{s})$	$\mathrm{Ag}^{+}(\mathrm{aq})$ move towards $\mathrm{Ag}(\mathrm{s})$
D.	electrons move from Ag (s) to $\mathrm{Cu}(\mathrm{s})$	$\mathrm{Cu}^{2+}(\mathrm{aq})$ move towards $\mathrm{Cu}(\mathrm{s})$

30. Consider the following standard electrode potentials:

$$
\begin{array}{ll}
\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Sn}^{2+}(\mathrm{aq}) & E^{\ominus}=+0.13 \mathrm{~V} \\
\mathrm{~Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pb}(\mathrm{~s}) & E^{\ominus}=-0.13 \mathrm{~V}
\end{array}
$$

What is the value of the cell potential, in V , for the spontaneous reaction that occurs when the two half-cells are connected together?
A. -0.26
B. 0.00
C. +0.13
D. +0.26
31. Two electrolytic cells are connected in series and the same current passes through each cell. The first cell contains silver electrodes in silver nitrate solution. The second cell contains copper electrodes in copper(II) sulfate solution. In one experiment 1.00 g of silver is deposited in the first cell. What mass of copper, in g , is deposited in the second cell?
A. $\frac{1.00}{107.87}$
B. $\frac{1.00}{63.55}$
C. $\frac{1.00}{107.87} \times \frac{63.55}{2}$
D. $\frac{1.00}{107.87} \times 63.55$
32. What is the name of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOCH}_{3}$ applying IUPAC rules?
A. 3,3-dimethylpropan-2-one
B. 3-methylbutan-2-one
C. 2-methylbutan-3-one
D. 3-methylbutanal
33. The drug methadone contains several different functional groups. Which functional groups are present in methadone?

A. ketone, benzene ring, amine
B. ketone, benzene ring, amide
C. aldehyde, alkene, amide
D. aldehyde, alkene, amine
34. Which compound has the lowest boiling point?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
35. Which organic compounds, \mathbf{Q} and \mathbf{P}, are formed in the following two-stage reaction pathway?

Stage 2: $\quad \mathbf{Q} \xrightarrow[\text { reflux }]{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq}) / \mathrm{H}^{+}(\mathrm{aq})} \quad \mathbf{P}$
A.
B.

\mathbf{Q}	\mathbf{P}
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOH}$
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	no reaction product formed
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHO}$

36. What is the organic product, \mathbf{Y}, formed in the following reaction?

$$
\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CN}+2 \mathrm{H}_{2} \xrightarrow{\mathrm{Ni}} \mathbf{Y}
$$

A. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$
B. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}_{2}$
C. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$
D. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOH}$
37. What organic product is formed from the reaction of benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$, with ethylamine, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$?
A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONHCH}_{2} \mathrm{CH}_{3}$
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONHC}_{6} \mathrm{H}_{5}$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$
38. Which compound has a chiral carbon?
A. Propan-2-ol
B. 1-bromo-2-methylbutane
C. 3-bromopentane
D. Ethane-1,2-diol
39. What effect of optical isomers on plane-polarized light can be measured using a polarimeter?
A. Reflection
B. Emission
C. Rotation
D. Absorption
40. The relationship between the pressure, P, and the volume, V, of a fixed amount of gas at a constant temperature is investigated experimentally. Which statements are correct?
I. A graph of V against P will be a curve (non-linear).
II. A graph of V against $\frac{1}{P}$ will be linear.
III. $\quad V=$ constant $\times \frac{1}{P}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III

